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ABSTRACT: We introduce a numerical framework for calculating
decay rate contributions when excited two-level quantum emitters
are located near layered plasmonic nanostructures, particularly
emphasizing the case of plasmonic nanostructures atop metal
substrates where three decay channels exist: free space radiation,
Ohmic losses, and excitation of surface plasmon polaritons (SPPs).
The calculation of decay rate contributions is based on Huygen’s
equivalence principle together with a near-field to far-field
transformation of the local electric field, thereby allowing us to
discern the part of the electromagnetic field associated with free
propagating waves rather than SPPs. The methodology is applied to the case of an emitter inside and near a gap-plasmon
resonator, emphasizing strong position and orientation dependencies of the total decay rate, contributions of different decay
channels, radiation patterns, and directivity of SPP excitation.
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Ever since the pioneering work of E. M. Purcell,1 stating that
spontaneous emission from quantum emitters (QEs) is

not an intrinsic property but can be modified by introducing
inhomogeneities in the nearby surroundings, researchers and
engineers have studied a multitude of systems, including planar
interfaces,2,3 cavities,4,5 photonic crystals,6,7 waveguides,8−11

and plasmonic (i.e., metallic) nanostructures.12−14 Especially
the interaction of QEs with metallic objects, being either
waveguiding or finite-sized structures, has shown the possibility
to enhance the decay rate by several orders of magnitude3,9,14

due to the strong confinement of the electromagnetic field at
metal−dielectric interfaces. Nevertheless, plasmonic structures
support a high number of dissipative states that are probed by
the near-field of a QE, leading, despite a strongly enhanced
decay rate, to emission quenching (or at least low quantum
yield) due to domination of nonradiative decay channels. Since
a high rate of spontaneous emission can improve efficiency of
certain optoelectronic devices, such as light emitting diodes15

and single-photon sources,16 it is at the heart of current
research to investigate configurations with high field enhance-
ment and reasonable ratio between radiative and nonradiative
decay probabilities. One such promising geometry consists of a
metal film overlaid with a QE-doped nanometer-thin dielectric
layer supporting rectangular or circular metal nanopar-
ticles,17−20 hence, featuring gap-surface plasmon (GSP)
resonances and, for this reason, is also known as GSP
resonators.21 It should, however, be noted that the proximity
of the QE and the metal film facilitates the excitation of surface
plasmon polaritons (SPPs) which, in addition to the radiative
and nonradiative relaxation paths, can be considered as a third
decay channel. In the quest for high radiative decay rates, one

typically does not differentiate between SPP and nonradiative
decay channels, but we would like to emphasize that in certain
cases, such as the design of efficient local sources for plasmonic
circuitry,9−11 it is of great importance to know the rate of SPP3

or waveguide mode9 excitation. For this reason, we propose a
numerical methodology, based on Huygen’s equivalence
principle and a near-field to far-field (NF2FF) transformation
of the local electric field,22−24 that, unlike other numerical
studies,19 allow for accurate calculations of the radiative,
nonradiative, and SPP decay rates for layered plasmonic
systems with arbitrary-shaped inclusions. The calculation
procedure is verified for QEs above a metal film and applied
to the study of GSP resonators, emphasizing strong position
and orientation dependencies of QE of the total decay rate,
influence of decay channels, radiation patterns, and direction-
ality of SPP excitation−features that all can be important
depending on the application.

■ RESULTS AND DISCUSSION
Basic Equations. In the regime of weak coupling between

light and matter, the effect of an electromagnetic field acting on
an QE can be described perturbatively, meaning that the light
field modifies only the decay rate of spontaneous emission.
Moreover, it is generally accepted that the relative change in the
spontaneous decay rate of a two-level QE (i.e., the Purcell
factor), γtot/γ0, where γ0 is the free space decay rate and γtot is
the modified rate due to inhomogeneities in the nearby
surroundings, can be calculated using classical calculation of the
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normalized power dissipated by an electric dipole, Ptot/P0, in
this inhomogeneous environment:25
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Here, ω is the angular frequency, P0 = |μ|2ω√εk0
3/(12πε0) is

the power radiated in homogeneous space with relative
permittivity ε, k0 is the vacuum wavenumber, ε0 = 8.854 ×
10−12 F/m is the vacuum permittivity, μ is the dipole moment,
* means complex conjugate, and E is the electric field evaluated
at the position of the dipole r0.
It should be noted that an excited QE in inhomogeneous

surroundings not only relaxes to the ground state via
spontaneous emission of photons, but may also decay by
Ohmic heating in lossy media and/or by excitation of surface
and waveguide modes in layered geometries.25 In this work, we
consider a layered geometry, as shown in Figure 1, in which the

lower medium (medium 2) is metal and may be decorated by a
subwavelength-thick spacer layer (medium 3) with the QE
being in close vicinity of an arbitrarily shaped metal
nanostructure. As such, the total spontaneous decay rate can
be written as γtot = γrad + γspp + γabs, where γrad, γspp, and γabs are
the decay rates into free space radiation, excitation of surface
plasmon polaritons (SPPs), and absorption in metal,
respectively. The normalized radiative decay rate can be
found by integrating the time-averaged far-field Poynting
vector on a hemisphere in the upper dielectric medium
(medium 1) and dividing by P0, that is,
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where Eff is the electric far-field. Second, we can calculate the
SPP decay rate by realizing that the difference in power leaving
the surface Γ in the near-field region of the QE (see Figure 1)
and the power reaching the far-field must be equal to the power
carried by SPPs. Consequently,

∬
γ

γ
γ
γ

= · ̂ −
ΓP

SS n
1

dspp

0 0

rad

0 (3)

where S = 1/2Re{E × H*} is the time-averaged Poynting
vector, H is the magnetic field, and n̂ is the outward-pointing
normal vector to Γ. Finally, the nonradiative decay channel can
be quantified by the following relation
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where the quantities in the numerator follow from eqs 1−3.
Having setup the basic equations used in this work, we would

like to add a few comments to the assumptions and
approximations involved. First, it should be noted that the
validity of eq 3 implies the assumption of subwavelength-thin
dielectric spacer so that it does not support photonic waveguide
modes. Second, since SPPs attenuate as they propagate along
the metal surface, we need to put restrictions on the dimension
of Γ in order to ensure the correct balance between rate of SPP
generation and quenching. As the nonradiative contribution to
the total decay rate can be viewed as excitation of lossy surface
waves that decay within a fraction of a wavelength,3 we define
the lower bound λ/4 < LΓ, with LΓ being the distance from QE
to Γ. The upper bound on LΓ, on the other hand, is limited by
the propagation length of the SPP, Lspp, hereby leading to the
condition LΓ ≪ Lspp. In the following sections, we investigate
QE emission at the wavelength λ = 780 nm for which λ ≪ Lspp,
thus resulting in a proper balance between decay rate
contributions when LΓ ∼ λ/4 − λ. As a study example, Figure
S1 in Supporting Information (SI) demonstrates the weak
dependence of decay rates on LΓ for a vertically oriented QE
positioned in air and 20 nm above a gold substrate. In contrast,
Figure S2 in SI displays for the same configuration the
dependence of decay rates as a function of separation when
emission occurs at λ = 500 nm and λ = 550 nm in which LΓ ≳
Lspp, hereby leading to an improper balance between the
absorptive and SPP decay rates. Additionally, it is worth noting
that the calculation of the absorptive decay rate using eq 4 is a
computationally inexpensive calculation that automatically
ensures the correct energy balance. However, as discussed by
C. Ciraci ́ et al.,19 one can also calculate γabs/γ0 directly by
integrating the Ohmic heating density [Uh(ω,r) = 1/2ωε0εm″|
E|2, where εm″ is the imaginary part of the metal permittivity and
E is the electric field in the metal] in the metal bounded by Γ.
As such, the comparison of eq 4 with the direct calculation of
γabs/γ0 can be used to benchmark the numerical accuracy of the
calculations devised in eqs 1−4. As an example, Figure S3 in SI
displays the absorptive decay rate obtained by both mentioned
procedures for a vertical QE in air positioned above a gold
substrate. It is seen that the two procedures give almost
identical results when quenching constitutes an appreciable
fraction of the total decay rate. As a final comment, it ought to
be mentioned that for an optically thick spacer, in which
plasmonic and photonic propagating modes coexist, the SPP
decay rate (eq 3) turns into a total waveguide mode decay rate
that cannot distinguish the contributions from the different
propagating modes. We envision that the relative contributions
of the different modes can be obtained by projecting the total
electric field on the different mode fields.

Near-Field to Far-Field Transformation. In the study of
QEs near layered plasmonic nanostructures and the coupling to
different decay channels, it is clear from the previous section
that one must know the electric far-field (see eq 2). Although
some numerical (or semianalytical) approaches allow for a
direct evaluation of the far-field, such as, for example, the

Figure 1. Sketch of plasmonic layered system, consisting of an
optically thick metal film, a subwavelength dielectric spacer, and a
quantum emitter in close vicinity of an arbitrary-shaped metallic
nanostructure.
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boundary element method,26 the finite element approach
(FEA) utilized in the work permits (for computational reasons)
only to evaluate the electromagnetic field in a limited space
around the dipole source. The advantage of FEA is the broad
applicability and the superior meshing capabilities, allowing one
to study practically any kind of geometries and material
compositions, but in order to obtain the far-field, one must
employ a NF2FF transformation.27 Such NF2FF trans-
formations all rely on Huygens equivalence principle and
knowledge of Green’s functions for the reference geometry (i.e.,
without sources and nanostructures).22−24 The equivalence
principle states that the respective electric and magnetic surface
currents

= ̂ × = − ̂ ×J n H M n E,s s (5)

defined on a closed fictitious surface surrounding all sources
and scatterers, create the same field outside of the surface as the
original problem, just with the geometry being the simpler
reference geometry. In our case, with the lower medium being
metal, we approximate the closed surface with an open surface
Γ (see Figure 1) and the reference geometry is the three-
layered media with interfaces at z = 0 and z = −ts. It should be
stressed that that usage of an open surface is only exactly valid
for a perfect metal,23 since in this case no field (i.e., Huygen
sources) exists in the metal. Noting, however, that the
electromagnetic field is strongly attenuated within a few tenths
of nanometers inside a good conductor, it is clear that this field,
constituting Huygen sources, will be strongly attenuated before
it reaches back to the metal−dielectric interface where it can be
transmitted and, hence, contribute to the far-field response. As
an example of the good approximation involved in choosing an
open surface Γ, Figure S4 in SI displays the almost identical
radiation patterns of a vertical dipole above a gold substrate
when Γ is chosen as an open and closed surface, respectively. In
this regard, we would like to point out that for configurations
containing optically thin metal films, it is in general advisible to
use closed fictitious surfaces.
Assuming for the moment that the Green’s dyadics for the

reference geometry are constructed, the electric field at position
r outside of Γ is represented by the expression [time
convention: exp(−iωt)]
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where G⃡J and G⃡M are the electric and magnetic Green’s dyadics,
respectively. In evaluating the electric far-field, however, one
can take advantage of the translational invariance of the
reference geometry in the xy-plane, hereby allowing for a 2D
Fourier transform of the electric field in a plane z > 0, that is
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with
∼←→

G J and
∼←→

GM being the angular spectrum representation of
Green’s dyadics, K = (kx,ky) is the in-plane wave vector, and R′
= (x′,y′) is the in-plane position vector on the source surface Γ.
As the electric field at each point in the far-field represents a
plane wave with a specific wave vector (a fact utilized in eq 2),

it naturally follows that the Fourier spectrum entirely defines
the far-field. A thorough derivation shows that25
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where a ̂ = r/r is a unit vector pointing in the direction of
observation, r is the distance from origin to observation point,
k1 = k0√ε1, and k1z = (k0

2ε1 − |K|2)1/2.
The angular spectrum representation of Green’s dyadics for

layered geometries can be constructed in several ways, but one
intuitive and elegant approach is developed by J. E. Sipe.28

Without dwelling on the details, the method immediately splits
the fields generated by electric and magnetic sources into s- and
p-polarized waves from which the interaction with material
interfaces can be described by Fresnel transmission and
reflection coefficients. In order to describe the propagation
and polarization of plane waves, two right-handed triads (s,̂ p̂i+,
k ̂i+) and (s,̂ p̂i−, k̂i−) are defined (see Figure 1), which describe
upward and downward propagating waves in medium i,
respectively, and can be expressed as
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where K̂ = K/K, K = |K|, and ki = k0√εi. The use of
polarization vectors s ̂ and p̂i± result in Green dyadics whose
construction allow for an immediate verification by physical
intuition. For example, if we at first consider a single interface at
z = 0 between metal and dielectric half-spaces (i.e., ε3 = ε2 in
Figure 1 and Γ is limited to medium 1), the Green’s dyadics for
upward propagating waves in medium 1 take the form
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where η0 = (μ0/ε0)
1/2 is the vacuum wave impedance. In the

equations above, the first term in square brackets denotes the
direct upward propagation of s- and p-polarized plane waves to
the observation plane at z, while the second term describes
initially downward propagating waves (generated from sources
on Γ) that reflect on the interface with amplitude and phase
defined by the Fresnel reflection coefficients between medium i
and j
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Furthermore, note that the factors exp[ik1z(z ∓ z′)] in eqs 10
and 11 describe phase accumulation between source point z′
and observation plane z (≫z′) for the direct and reflected part
of the electric field.
Returning to the three-layer geometry in Figure 1, the

problem becomes slightly more complicated since different
Green’s dyadics must be used for current sources in mediums 1
and 3. Noting that the electric field generated by sources in
medium 1 must, similar to the single interface case, consist of a

ACS Photonics Article

DOI: 10.1021/ph5003472
ACS Photonics 2015, 2, 228−236

230

http://dx.doi.org/10.1021/ph5003472


direct and reflected part, the appropriate Green’s dyadics
correspond to eqs 10 and 11 with the reflection coefficients
replaced by the generalized counterpart for the three-layer
system
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where the superscript m denotes either s- or p-polarized light.
The first term describes reflection at the interface between
mediums 1 and 3, while the second term accounts for
downward propagating plane waves that transmit into medium
3, reflect at the interface between mediums 3 and 2, and
retransmit into medium 1, with the possibility of experiencing
multiple reflections in medium 3 (as seen by the geometric
series (1 − q)−1 = 1 + q + q2 + ...). Regarding upward
propagating waves in medium 1 emanating from sources in
medium 3, the Green’s dyadics must consist of contributions
from initially upward propagating plane waves that are
transmitted into medium 1, and initially downward propagating
waves that reflect at the interface between medium 3 and
medium 2, followed by transmission into medium 1. In both
cases, however, light will undergo multiple reflections in
medium 3, meaning that the appropriate Green’s dyadics are of
the form
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represents the generalized transmission coefficient from
medium 3 to medium 1. Summarizing, we are now able to
calculate the electric far-field in medium 1 for the three-layer
geometry in Figure 1 by utilizing eqs 7 and 8, with source
currents defined in eq 5 and Green’s dyadics in eqs 10, 11, 14,
and 15.
Quantum Emitter near Planar Metal Interface. As a

way of benchmarking the proposed methodology for
quantifying decay rate contributions of QEs near layered
plasmonic structures, we study the simple situations of a QE
above a bare and dielectric-covered metal substrate for which
analytical results exist.3 Moreover, we choose the emission
wavelength of QE to be λ = 780 nm, metal is assumed to be
gold, and the 50 nm thick dielectric spacer represents silicon
dioxide (SiO2). In the case of QE in close vicinity of a bare gold
film (Figure 2a,b), one notices the different dependencies of
decay channels as a function of separation. For nanometer
separations, the total decay rate is strongly enhanced, with the
absorption in gold being the dominant decay channel, i.e.
quenching of QE. At intermediate distances (20 nm < z0 < 300
nm), however, vertical and horizontal QEs preferentially decay
into SPPs and freely propagating waves, respectively. Finally,

for large separations (z0 > 300 nm), the total decay rate
approaches the free-space value, although the dominant
radiation channel shows oscillatory behavior related to the
interference with the reflected light. Note also that, unlike other
studies,3 we attribute power lost upon emitted light on
reflection to the nonradiative decay channel, which is why
this decay mechanism for z0 → ∞ decreases to a constant value
(marked with dotted-line in Figure 2) and not zero as the SPP
contribution. In regard to numerical calculations (markers in
Figure 2), we see an almost perfect overlap with analytical
results for the non-negligible decay channels. It is only for large
separations, when the relative decay rates into SPPs and Ohmic
losses are of the order ∼10−2, that these calculations deviate
from analytical curves. We ascribe this limited accuracy on the
second decimal to factors like truncation of simulation domain,
meshing, and two successive numerical surface integrations
(eqs 2 and 7).
In the second case, consisting of a QE above a gold substrate

overlaid with 50 nm of SiO2 (Figure 2c,d), we benchmark the
implementation for the more complicated three-layer geometry.
Since the QE for all z0 is kept at a distance to the metal
interface, the total decay rates are only moderately increased,
with a weak dependence on the separation distance for z0 < 100
nm. In fact, the similar optical properties of SiO2 and air
(compared to that of gold) result in QE decay rate
dependencies on separation that qualitatively resemble those
from a bare gold substrate when QE is displaced by ∼70 nm,
corresponding to the optical path in the SiO2 spacer.
Accounting for this QE displacement between the two systems,
it is seen that for small separations the spacer promotes the
probability of QE relaxation by SPP excitation. Importantly, the

Figure 2. Relative decay rates for (a, c) vertical and (b, d) horizontal
QE in air as a function of separation z0 from (a, b) gold substrate and
(c, d) gold substrate overlaid with 50 nm of silicon dioxide. Markers
correspond to numerical calculations (based on eqs 1−4) and lines are
analytical curves. Gray dashed-dotted lines define the asymptotic value
of γabs/γ0 for z0 → ∞. The emission wavelength is in all cases λ = 780
nm.
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numerical calculations again show good agreement with
analytical results for the dominant decay rates, illustrating
only noticeable deviation for the small absorptive decay rate
and, for large separations, the SPP contribution.
Quantum Emitter near Gap-Plasmon Resonator. Gap-

surface plasmon resonators considered in this work consist of a
gold nanobrick of height t and width w on top of a SiO2 spacer
of thickness ts and optically thick gold film (Figure 3a). Such

metal−insulator−metal configurations behave as Fabry−Perot
resonators in which plasmonic resonances correspond to
standing waves of gap-surface plasmon (GSP) modes, arising
due to the efficient reflection of GSP modes at nanobrick
terminations.21 Accordingly, GSP-resonators show easy scaling
of resonance wavelengths by either the nanobrick width or gap
thickness,29,30 while the intrinsic properties of GSP modes
allow for high field enhancement in the gap region21 and
configurations that either efficiently scatter or absorb light31

(facilitating, e.g., the design of black32 and colored33

metasurfaces) or launch SPPs.34,35 It should be noted that
the methodology proposed here can easily be extended to
quantitatively study the optical characteristics of GSP-

resonators, which include not only scattering and absorption
cross sections but also a SPP cross section, describing the
effective size of a resonator with respect to launching SPPs (see
Methods). As instructive examples, Figure 3b,c displays cross
sections normalized to the geometrical area w2 for two different
configurations, both showing the fundamental GSP-resonance
at λ = 780 nm. It is clear that at resonance both GSP-resonators
efficiently interact with the normal incident x-polarized light,
demonstrating extinction cross sections of ∼×35 larger than the
geometrical area. In the first case (Figure 3b), due to the
relatively weakly confined GSP mode, the localized plasmon
decays mainly via reradiation into free space (∼50%), followed
by SPP (∼30%) and absorption (∼20%). By decreasing the gap
thickness ts, the GSP mode becomes increasingly confined to
the spacer region below the nanobrick, hence, reducing
scattering loss by reflection at end terminations at the expense
of increased absorption. This is clearly seen for ts = 20 nm
(Figure 3c), where absorption loss (∼45%) exceeds the
scattering contribution (∼40%), with the SPP decay channel
(∼15%) playing a minor role. Note also a reduced line width of
the GSP resonance for ts = 20 nm, which owes to a decrease in
the electric dipole moment for decreasing spacer thickness in
favor of a magnetic response, decreasing thereby the radiative
damping.31 The strong localized electric field below the
nanobrick at GSP resonance is exemplified in insets of Figure
3b,c, illustrating the general features of the fundamental GSP
resonance with zero field in the center, maximum field below
the rim of the nanobrick, dominantly z-directed electric field,
and increasing field enhancement for decreasing spacer
thickness.
As the localized enhancement of the electric field near GSP

resonators indicates a strongly position-dependent and
increased local density of states, we proceed with a quantitative
study of decay rate modifications, including distribution in the
three decay channels, of QEs positioned in the spacer layer in
close proximity of the resonant GSP resonator from Figure 3b
with emission wavelength λ = 780 nm (see Figure 4; a two-
dimensional representation of the data can be found in Figures
S5 and S6 in SI). Moreover, we restrict (due to symmetry
reasons) the calculations to the first quadrant in the xy-plane
and three z-planes, while focusing on z-, x-, and isotropically
oriented QEs. The latter case is important in relation to
experimental situations where the orientation of QEs is
generally not known. Finally, one should note that decay rate
modifications of y-directed QEs can be obtained from the
results of x-directed counterparts by mirroring the data in the
plane defined by the z-axis and the line y = x. Regarding Figure
4a−c, it is clear that for 5 nm separation between QE and gold
film or nanobrick the total decay rates are enhanced by up to 2
orders of magnitude, with the largest increase observed for z-
directed QEs due to the overlap of this orientation with the
electric field of the GSP resonance. As further discussed below,
one should take notice of the pronounced difference in
contributions of decay channels for QEs close to gold film and
nanobrick (Figure 4d−f). Furthermore, in relation to the inset
in Figure 3b, one clearly observes the direct correlation
between the spatial distribution of the enhanced electric field
and the position-dependent total decay rate of z-directed QE,
featuring the highest γtot at shortest distance to the vertex of the
nanobrick (Figure 4a). The modification of total decay rate for
x-directed QEs away from metal surfaces is, on the other hand,
controlled by the smaller x-component of the GSP field; a fact
seen in the center plane of Figure 4b where increased γtot

Figure 3. (a) Sketch of gap-surface plasmon resonator, defined by
optically thick metal substrate, dielectric spacer thickness ts, and
nanobrick height t and width w. Normalized absorption, scattering,
and SPP cross sections for GSP-resonator of gold and SiO2 for (b) t =
ts = 50 nm and w = 120 nm, and (c) t = 50 nm, ts = 20 nm, and w =
102 nm. The incident x-polarized plane wave propagates normal to the
surface. Insets in (b) and (c) display the electric field enhancement in
the xz-plane at λ = 780 nm, with cones illustrating the direction of the
field. Note that the scale of the color bar is chosen to emphasize the
field distribution below the nanobrick rather than the strongly
enhanced field at nanobrick corners.
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occurs at and outside the rim of the nanobrick but not beneath
it, as here metal boundary conditions enforce the electric field
to be perpendicular to the gold surfaces.
Proceeding with the influence of different decay channels as a

function of QE position in the spacer layer, we limit the
discussion to the experimentally important isotropically
oriented QEs (Figures 4d−f), though calculations for z- and
x-directed QEs can be found in Figures S7 and S8 in SI. Figure
4d−f display the probability of which a QE decays either
radiatively (i.e., quantum yield), via SPPs, or nonradiatively. As
expected from the study of the bare gold interface (Figure 2),
QEs mainly decay nonradiatively for nanometer separations to
the gold film. On the other hand, it is evident that a QE
positioned in the upper half of the spacer and in the
neighborhood of the nanobrick may show moderate enhance-
ment of the total decay rate (up to ∼50, c.f. Figure 4c), with
radiative and SPP efficiency of ∼0.4 (Figure 4d,e). Importantly,
even a QE positioned 5 nm below the vertex of the nanobrick,
featuring strongly enhanced total decay rate, displays quantum
yield of ∼0.4. Accordingly, QEs near GSP resonators may show
strong enhancement of spontaneous emissions or function as
an efficient local source for generation of SPPs. It should be
noted that further enhancement of spontaneous emission can
be achieved by reducing the thickness of the spacer and
replacing gold with silver, as recently confirmed experimen-
tally.17,18 As an example of the effect of spacer thickness
reduction, QEs beneath the GSP resonator in Figure 3c shows
up to 3 orders of magnitude increase in the total decay rate at λ
= 780 nm, with isotropically oriented QEs still featuring
quantum yields of ∼0.4 in the center of the spacer layer
(Figures S9−S12 in SI).
As QEs near metallic nanostructures excite the associated

plasmonic resonances, which in turn strongly modifies the
spontaneous decay rate, the direction of which photons are
emitted into the far-field and the directional emission of SPPs

will also be affected. We now study emission patterns of
photons and SPPs for z- and x-directed QEs as a function of
position in the spacer of GSP resonator in Figure 3b; emission
patterns for y-oriented QEs can be found in Figure S13 in SI.
To be specific, we limit the discussion to QEs in the center of
the spacer and moving along the x-axis (Figure 5a), which
entails modification in the radiation patterns only in the xz-
plane (Figure 5c). Likewise, the configuration ensures that SPP
emission patterns are mirror symmetric with the xz-plane,
hence allowing us to only display the positive half of the xy-
plane (Figure 5d). Furthermore, note that all emission patterns
are normalized to unity, whereas the efficiency of emission can
be evaluated from Figure 5b, displaying the relative decay rates
as a function of x-coordinate. Regarding radiation patterns
(Figure 5c), it is clear (and expected) that the symmetric
configuration (x = 0 nm) results in emission equivalent to a QE
above a gold substrate without the presence of the nanobrick.
However, as soon as the symmetry is broken, the GSP mode is
excited and, thus, leads to radiation patterns mainly dictated by
this mode (see Figure S14 in SI). Interestingly, note how the
angle of the main lobe of radiation for x-directed QE is
especially sensitive to the position and that z- and x-directed
QEs display main lobe radiation on opposite sides of the
surface normal (z-axis); the latter observation indicates a
possible route to experimentally determine the orientation of
QE. Finally, it is worth noting that despite the minimal
influence of the GSP resonator on QE decay rates for large
separations (x > 150 nm), the radiation patterns are still
strongly modified, demonstrating for x = 250 nm multilobe
behavior as a result of interference between direct QE radiation
and radiation emanating from the excitation of the GSP mode.
With respect to excitation of SPPs (Figure 5d), it is clear that
displacing the QE along the x-direction leads to noticeable
unidirectional excitation of SPPs. For example, for the efficient
z-directed QE at x = 30 nm (γspp/γ0 ∼ 15, c.f. Figure 5b) the

Figure 4. Total decay rate modification for (a) z-directed, (b) x-directed, and (c) isotropically oriented QE as a function of position in the dielectric
spacer [(x,y) ∈ [0;180] nm in steps of 30 nm and z = −5, −25, −45 nm] of GSP resonator (t = ts = 50 nm, w = 120 nm) at λ = 780 nm. (d−f)
Distribution into the three decay channels as a function of position for isotropically oriented QE. Note that the system is for ease of visualization not
drawn to scale; domain parameter L = 250 nm.
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ratio between power flowing along the ±x-direction is D ∼ 10.
Moreover, one notices that for a large range of x-positions (x =
30−150 nm) SPPs are predominantly launched along ±x-
direction (i.e., D > or < 1) for z- and x-directed QEs,
respectively.

■ CONCLUSIONS
In summary, we propose a numerical framework to accurately
calculate radiative, SPP and nonradiative decay rates for QEs
close to metal films and arbitrarily shaped nanostructures. The
methodology is based on Huygen’s equivalence principle and
knowledge of the angular spectrum Green’s dyadics for the
layered reference system, allowing one to accurately calculate
the electric far-field. Using the finite-element approach, we
verify the calculation procedure for QEs above a gold substrate,
demonstrating consistency with analytical results for the
dominant decay channels. As GSP-resonators recently have
shown the ability to strongly enhance spontaneous emission of
QEs embedded in the spacer layer,17−19 we discuss such a
configuration in detail, emphasizing the strong position and
orientation dependencies of the three decay channels, radiation
patterns, and directionality of SPP excitation, all features that
can be of interest depending on the application.
We would like to emphasize that the methodology can be

extended to systems of arbitrary number of layers and optically
thin metal films, with the possibility of constructing the
associated Green’s dyadics in a rather simple way, as outlined in
the text. Moreover, the approach enables one to study the
delicate interplay between geometric parameters, material

properties, and QE position and orientation in relation to the
total decay rate and significance of decay channels, hereby
allowing not only to optimize for strong spontaneous emission
but alternatively for efficient (and strongly directional)
excitation of SPPs, which is of great interest for developing
compact plasmonic circuitry.

■ METHODS
Finite Element Modeling. All calculations have been

performed using the commercial finite element software
Comsol Multiphysics (ver. 4.4) in which the simulation domain
is truncated using manually implemented unidirectional
perfectly matched layers. Quantum emitters are represented
by electric point dipoles that mathematically are equivalent to a
small line current, described by a constant product of current
and length, in the limit of vanishing length. It should be noted
that the calculation of the electric far-field, as defined in eqs 7
and 8 (featuring two sets of spatial coordinates), can be directly
implemented in Comsol using the dest-operator.
Regarding the calculation of optical cross sections for GSP-

resonators (Figure 3), the approach is based on the division of
the total electric field in mediums 1 and 3 (see Figure 1) in two
parts: E = Eref + Esc, where Eref is the reference field (i.e.,
without nanobrick) and Esc is the scattered field present due to
the nanobrick. It is only the latter quantity of the electro-
magnetic field (i.e., Esc and Hsc) that defines the equivalent
electric and magnetic surface currents

= ̂ × = − ̂ ×J n H M n E,s sc s sc (17)

which are used in calculating the electric far-field (Eff) and,
hence, the scattering and SPP cross sections:
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∬σ ω σ= · ̂ −
ΓI

SS n( )
1

d
i

spp sc sc
(19)

Here, Ii = E0
2/(2η1) is the intensity of the incident plane wave

with amplitude E0 and wave impedance η1, Ssc = 1/2Re{Esc ×
Hsc*} is the time-averaged scattered Poynting vector, and n̂ is
the outward-pointing unit vector to the surface Γ, as defined in
Figure 1. The absorption cross-section is defined as

∬σ ω = − − · ̂
ΓI

SS S n( )
1

( ) d
i

abs ref
(20)

where S and Sref are the Poynting vectors for the total and
reference field, respectively. The negative sign in front of the
integral ensures a positive quantity and indicates that power is
lost inside the surface Γ due to the presence of the nanobrick. It
should be noted that gold permittivity is described by
interpolated experimental data,36 while the spacer of silicon
dioxide takes on the constant refractive index of 1.45.
The radiation patterns in Figure 5b are obtained by plotting |

Eff|
2, whereas the SPP emission patterns in Figure 5d result

from plotting the squared norm of the normal component of
the electric field at the surface of the gold film on a circle of
radius r = 2λ = 1.56 μm.37

■ ASSOCIATED CONTENT
*S Supporting Information
Calculation of the dependence of decay rates on the size of the
surface Γ for vertical QE in air and positioned 20 nm above a

Figure 5. (a) Sketch of GSP-resonator for t = ts = 50 nm and w = 120
nm, and indications of QE positions for varying x-coordinate, y = 0
nm, and z = −25 nm. (b) Relative decay rates for z- and x-directed QE
as a function of x-coordinate. Normalized (c) radiation patterns in the
xz-plane and (d) SPP patterns in the xy-plane for the six QE positions
indicated in panel (a).
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gold substrate; calculation of decay rates for vertical QE in air
with emission wavelength of 500 and 550 nm as a function of
distance to a gold substrate; direct and indirect (see eq 4)
calculations of the nonradiative decay rate for vertical QE in air
with varying distance to a gold substrate; calculation of
radiation pattern of vertical QE in air positioned 20 nm
above a gold substrate for a closed and open surface Γ;
calculation of position-dependent decay rate distributions for z-
and x-directed QEs situated in the spacer of GSP-resonator
with gap thickness ts = 50 nm; position- and orientation-
dependence of total decay rate and probability of relaxation
paths for QE in the spacer of GSP-resonator with ts = 20 nm;
radiation patterns and directionality of SPP emission for y-
directed QE as a function of x-coordinate in the center of
spacer of GSP-resonator (ts = 50 nm); radiation pattern of the
fundamental resonance of GSP-resonators. This material is
available free of charge via the Internet at http://pubs.acs.org/
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